





# Early economic evaluation to develop & manage health services

Experience of an Action Learning Set within an Australian Local Hospital Network





**Andrew Partington** 

Research Fellow

**Jonathan Karnon** 

**Professor** 













- Virtual whiteboard sessions to capture the PICO logic.
- The logic behind how the intervention was expected to work, for whom, in which contexts, and why.
- From this we can structure decision-analytic models and economic evaluations.
- Is a living document of 'shared understanding' – helps set bounds of the evaluation.





### 65+y, via Ambulance, Triaged 3-5





### 65+y, via Ambulance, Triaged 3-5





### **Expert elicitation**

Where there's no, biased, or non-generalisable data and evidence ...

Elicitation as a formal way to translate implicit knowledge, interpretations and expectations into a statistical format



25 75 125 175 225 275 325 375 425 475 525 575 625 675 725



Capturing **uncertainty** and disagreement, so that it can be modelled

International Journal of Technology Assessment in Health Care

www.cambridge.org/thc

#### Method

Cite this article: Partington A, Crotty M, Laver K, Greene L, Haji Ali Afzali H, Karnon J (2024) Preparing early economic evaluations for the development and management of health service interventions, International Journal of Technology Assessment in Health Care, 40(1),

https://doi.org/10.1017/50266462324000539

Received: 20 September 2023

Preparing early economic evaluations for the development and management of health service

Andrew Partington<sup>1,2</sup>, Maria Crotty<sup>1,3</sup>, Kate Laver<sup>1</sup>, Leanne Greene<sup>1</sup>, Hossein Haji Ali Afzali<sup>1</sup> o and Jonathan Karnon<sup>1</sup> o

College of Medicine and Public Health, Flinders University, Adelside, SA, Australia; Australian Institute of Health Congge of instance and place. Meanly strategy conversely, substant, S.A. Austrance, Substantial conduction of the Conference of the Confer Adelaide Local Health Network, Adelaide, SA, Australia

 $\textbf{Objectives:} \ We \ draw \ from \ the \ Health \ Technology \ Assessment \ (HTA) \ literature \ to \ propose \ how$ hospitals and local health networks can prepare the key components of early com-











### Feeding back causal reasoning

Of those who would otherwise present to the ED, but would not be admitted

What % or proportion would you expect to be 'headed-off from the ED' <u>via the Care</u> Centre?



|                          | Minimum<br>possible | Most likely<br>(average) | Maximum<br>possible |
|--------------------------|---------------------|--------------------------|---------------------|
| Your original estimates: | 15                  | 37                       | 50                  |
| Updated estimates?       |                     |                          |                     |

Themes of thoughts expressed aloud by respondents during the exercise:

| memes of thoughts expressed data by respondents daming the exercise.        |                                                     |                                                                          |                             |                                  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|----------------------------------|--|
| Patient group                                                               | Existing care context                               | Early trialling of intervention                                          | Adaptations to intervention | External factors and confounders |  |
| <ul> <li>In practice, the CARE population is an older subset of</li> </ul>  | If not given an alternative, all CARE patients will | We have some personal experience in watching the                         |                             |                                  |  |
| the pre-specified 65yo+target population (~80yo).                           | present to an ED.                                   | num bers.                                                                |                             |                                  |  |
| <ul> <li>Often those who would be in 'grey zone' between</li> </ul>         |                                                     | <ul> <li>Of 10 people in the CARE centre, about 1/3 are</li> </ul>       |                             |                                  |  |
| needing short admission vs. could be discharged from                        |                                                     | admitted, so they're clearly in the CAREstream.                          |                             |                                  |  |
| ED.                                                                         |                                                     | <ul> <li>I would have hoped we can capture most if not all of</li> </ul> |                             |                                  |  |
| <ul> <li>The older and more fragile you get, the more likely you</li> </ul> |                                                     | those presenting to the ED who are discharged home                       |                             |                                  |  |
| are to get admitted – not for long, but still get admitted.                 |                                                     | with simple presenting complaints and issues.                            |                             |                                  |  |
|                                                                             |                                                     |                                                                          |                             |                                  |  |
|                                                                             |                                                     |                                                                          |                             |                                  |  |
|                                                                             |                                                     |                                                                          |                             |                                  |  |



### **Modelling outputs**





### **Modelling outputs**



1. -14,030 bed days of *net* savings, across the LHN due to avoided hospitalisations



2. LHN services for population expected to shrink from \$85.6 million in funded activity to \$65.0 million



 -\$20.6 million revenue reduction expected to be offset by -\$26.0 million reductions in costs



4. LHN expected to be +\$5.4 million better off though total services for target population still expected to run at -\$11 million "loss"



5. The pooled expectation was a 0.75 probability that the intervention would be dominant i.e., has both a positive budget impact and saves ED bed days.



Stakeholders engaged in modelling to understand the drivers of value



### **Development & funding support**

#### **Cost Headroom**

Q: "What is the maximum allowable cost (ceiling), given expected effects and funder WTP for effects?"

- LHN originally provided a financial envelope of \$4.0Mpa, within which to fit a service to fix a problem.
- Given expected financial impact and bed day savings that can be repurposed (or extracted), it's reasonable to expect the intervention's value to the system is approx. \$6.9Mpa\*.

#### **Effectiveness Legroom**

Q: "What is the minimum necessary effectiveness (floor), given the expected costs and funder WTP for effects?"

- Modelling suggested LHN intervention was expected to deliver -9,531 bed day savings.
- Given expected service costs of approx. \$3.0Mpa and <a href="https://www.hypothesised">hypothesised</a> WTP price of \$396 per bed day, the service would need to save at least -7,319 bed days ceteris paribus.

<sup>\*</sup> Not suggesting LHN should capture all value, but trying to buy them some "slack"



### Observational analyses ex post

- The early expectations for patient volumes within the intervention arm were 15% higher than delivered in practice – not too bad.
- Lengths of Stay within the intervention service aligned with elicited expectations.
- 3. Confirmation of at least non-inferior care being delivered, wrt number of days spend at home following discharge.
- No broader observable/attributable systems effect – Intervention only a "drop in the bucket" and many confounders.





#### **Counterfactual scenarios**

#### CARE Eligible Population - Relevant ED and CARE Centre activity



- The observed ED activity following the intervention might be -23% lower than it would have otherwise been, for the target population.
- This suggests that -911 bed days may have been saved within the ED over 12months
- Using pre-intervention admission rates, there could have been +2,532 additional admissions, or +240 EECU and +14,253 ward bed days.

#### Ongoing work:

Elicitation and DES of counterfactuals

#### Positive

# A backward ← look at 'what was', maybe 'what is' & 'what might be'







# A forward → look at 'what could be' and 'what should be', given rules



Statistical modelling is important for inferring new knowledge, but often <u>insufficient</u> (incomplete) to directly inform decisions and future actions ...

Mathematical (computational) modelling is necessary to profile the expected future value of decisions and actions, but <u>require robust evidence</u> to be reliable ... (GIGO)



### **Closing reflection**

"All models are wrong,

but some are useful"

George E. P. Box



Commentary



It's Not the Model, It's the Way You Use It: Exploratory

Early Health Economics Amid Complexity Comment on "Problems and Promises of Health Technologies: The Role of Early Health

Economic Modelling"

Int J Health Policy Manag 2021, 10(1), 36–38

Andrew Partington 1,2\*\*\* Jonathan Karnon 1

a recently published in this journal, Grutters et al outline the scope and impact of their early health

Article History: Received: 29 October 2019 Accepted: 7 January 2020 ePublished: 18 January 2020 "In preparing for battle I have always found that pions are useless, but planning is indispensable." modelling



#### **Connect & collaborate**





@arpartington.bsky.social

Visiting Fellow, L'École des Hautes Études en Santé Publique (EHESP)

Research Fellow, Flinders Health & Medical Research Institute, Flinders University

Honorary Fellow, Australian Institute of Health Innovation, Macquarie University

Deputy Editor, International Journal of Technology Assessment in Health Care, Cambridge University Press

Health Economics | Health Services Research | Process Mining

Health Technology Assessment | Implementation Science

